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Abstract
The topological properties of adiabatic gauge fields for multi-level (three-level
in particular) quantum systems are studied in detail. Similar to the result that
the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system
or angular momentum systems, etc) has a monopole structure, the curvature
2-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-
level quantum systems are shown to have monopole-like (for all levels) or
instanton-like (for the degenerate levels) structures.

PACS numbers: 03.65.Vf, 11.15.−q, 14.80.Hv

1. Introduction

In the past 20 years, geometric phase has attracted much attention in quantum theory since
Berry firstly showed that the adiabatic phase in a two-level system (or spin-half systems) has
a monopole field strength in the parameter space [1]. Soon after that, Simon pointed out
that Berry phase is the holonomy on the U(1) fibre bundle formed by the Hamiltonian and
its eigenstates, and the connection on the bundle is given by the parallel transport condition
[2]. Furthermore, the geometric phase has been extended to processes which undergo non-
adiabatic (AA phase) [3] or non-cyclic (Pancharatnam phase) [4] evolution. On the other hand,
the non-Abelian adiabatic phase was first discussed by Zee and Wilczek [5]. The topological
properties of non-Abelian Berry phase for SO(2n + 1) spinor were studied by Benedict et al
[6]. In particular, Murakami et al discussed the SU(2) holonomy of SO(5) spinor and
concluded that it is described by a Yang monopole at the degeneracy point [7].

We note that multi-level (level number N � 3) quantum systems appear in many
application techniques, such as many-channel optical interferometry [8], quantum computation

1751-8113/07/071661+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1661

http://dx.doi.org/10.1088/1751-8113/40/7/015
mailto:liuzx@mail.nankai.edu.cn
http://stacks.iop.org/JPhysA/40/1661


1662 Z-X Liu et al

[9] and quantum memory with electromagnetically induced transparency (EIT) [10, 11], etc.
The study of the holonomy of such systems will have many interesting potential applications,
e.g. geometric quantum computation & geometric quantum memory, and so on. Specifically,
people can take advantage of these geometric features to the aim of quantum information
processing, as the robustness of the Berry phase can result in a resilience against some kinds
of decoherence sources [12]. As a result, the Berry phase in three-level systems (SU(3)

systems) has been discussed by many authors [13, 14]. The detection of geometric phase shift
in a three-level system was achieved by Barry C Sanders et al through a three-channel optical
interferometer [15]. Going beyond SU(3), the Berry phase for general compact Lie groups
was studied by E Strahov [16].

Although the adiabatic phase for SU(3) systems has been widely studied, to our
knowledge, the topology of the adiabatic gauge fields for multi-level systems has not been
clearly investigated. In the present paper, we study in detail the topological properties of the
adiabatic gauge fields for SU(3) quantum systems. The development herein is outlined as
follows. In section 2, we briefly review the monopole structure of U(1) holonomy in SU(2)

system. In sections 3 and 4, we study the adiabatic gauge field for double degenerate three-
level systems. We show that the curvature of the field for the non-degenerate level also has a
monopole structure, while the non-Abelian curvature of the field for the degenerate level has a
instanton-like structure. The topologies of the adiabatic gauge fields of the SU(3) eight-level
system and the non-degenerate three-level system are discussed in section 5. In the final
section we conclude our results and present some further remarks. The detailed derivatives of
some results are given in the appendix.

2. Monopole structures of the holonomy for SU (2) systems

Before dealing with SU(3) systems, let us review the geometric holonomy for SU(2) systems.
Firstly, we go over the non-degenerate case. The adiabatic phase for a spin 1/2 particle in a
magnetic field was firstly studied by Berry [1], where a monopole structure of the adiabatic
gauge field strength was discovered. Here, for a general consideration, we envisage a particle
with spin j interacting with an external magnetic field. There are three parameters in the
Hamiltonian, namely, the magnetic field strength B (B � 0, can be seen as the radius of the
parameter space) and two direction angles θ and ϕ. They span a three-dimensional Euclidian
space R

3. For the purpose of simplicity, we assume that B is independent of time. The
time-dependent Hamiltonian H(B) is given by the SU(2) transform of H0 = µBĴ z, which
is the Hamiltonian in the rest frame (see the formula below). Because H0 is invariant under
the action of a U(1) subgroup of SU(2), which is generated by H0 itself, we only need to
consider the group element in the coset space SU(2)/U(1) ∼= CP 1 ∼= S2, which is known as
the Bloch sphere. Thus the (co)adjoint orbit of H0 with given non-zero B is a sphere S2. So
the parameter space can be seen as the collection of all the orbits. When B = 0, the orbit
becomes a point, which is the origin of the parameter space R

3.

H0(B) = µBĴ z, H(B) = µB · Ĵ = U(B)H0U(B)†,

U(B) = exp{−iθ [−sin ϕĴ x + cos ϕĴ y]} = exp

{
−θ

2
[e(−iϕ)Ĵ + − e(iϕ)Ĵ−]

}
(1)

= exp{−ηĴ +}(1 + |η|2)Ĵ z exp{η∗Ĵ−},
where B(t) = B(sin θ(t) cos ϕ(t), sin θ sin(t)ϕ(t), cos θ(t)), and η = tan θ

2 e−iϕ . The
eigenstate of H0 with eigenvalue mµB is ψ0 = |m〉, m = −j,−j + 1, . . . j , and the
instantaneous eigenstate of H(B) with the same eigenvalue is ψ(B) = U(B)ψ0. Then
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{(B, ψ(B)|H(B)ψ(B) = E(B)ψB)} defines a line bundle over the parameter space. The
Berry connection 1-form for this level is

A = 〈ψ(B)| d|ψ(B)〉 = 〈ψ0|U †(B) dU(B)|ψ0〉
= Aθ dθ + Aϕ dϕ, (2)

where Aθ = 0, Aϕ = 2im sin2 θ
2 . And the curvature 2-form is

F = dA = 〈ψ0| dU †(B) ∧ dU(B)|ψ0〉 = 1

2

2∑
i,j=1

Fij dxi ∧ dxj , (3)

where x1 = θ, x2 = ϕ. A straightforward calculation gives Fθϕ = im
2 sin θ . The curvature (or

the gauge field strength) can be written as a vector: F =∗ (Fij ) = imB̂
2B2 . The adiabatic phase

for a cyclic evolution is equal to

γg = i
∮

C

A · dl = i
∫

S,∂S=C

F · dS = i
∫

S,∂S=C

F · B̂B2 d� = −m�(S), (4)

where C is the path of the magnetic field in the parameter space, S is the surface with edge C
and �(S) is the solid angle of the surface S. If we integral F through a surface surrounding the
origin, we get the first Chern number:

i

2π

∮
S2

F · dS = i

2π

∮
S2

F · B̂B2 d� = −2m. (5)

So, we can conclude that F describes a gauge field with a Dirac monopole at the origin,
with its strength (i.e. the first Chern number) given by −2m.

Now, we turn to the degenerate case. If the Hamiltonian is not a linear but a quadratic
combine of the SU(2) generators like this form:

H0 = (µBĴ z)
2, H(B) = (µB · Ĵ)2 = U(B)H0U(B)†. (6)

Then for H0 the spin state ψ1 = |m〉 and ψ2 = |−m〉 (m �= 0) have the same energy
eigenvalue m2µ2B2, that is to say, this level is doubly degenerate. Thus in the adiabatic
approximation, the connection 1-form is Aik = 〈ψi |U †(B) dU(B)|ψk〉, (i, k = m,−m).
From equation (1), it is easy to get that Aik = 0 when |m − (−m)| = 2m > 1. So,
if m �= 1/2, the connection 1-form for the doubly degenerate Hilbert space is Abelian:
A = imσz

B
tan θ

2 B sin θ dϕ, and it is equal to the direct sum of the connection 1-forms of the
two components, which we have discussed above. If m = 1/2, the connection 1-form is
non-Abelian:

A = − i

2

[
−cos ϕσy +

(
j +

1

2

)
sin ϕσx

]
dθ

+
i

2

[
sin2 θ

2
σz +

(
j +

1

2

)
sin θ(cos ϕσx + sin ϕσy)

]
dϕ (7)

and the curvature 2-form is

F = dA + A ∧ A =
{

− i

2

[(
j +

1

2

)2

− 1

]
1

B2
σz

}
B2 sin θ dθ ∧ dϕ, (8)

which can also be written as a vector F = − i
2

[(
j + 1

2

)2 − 1
] B

B3 σz. It is interesting that though
the gauge potential is not diagonal, the field strength is diagonal. Similar to the non-degenerate
case, the first Chern number is given by: i

2π

∮
Tr(F) · dS = Tr

(−i
[(

j + 1
2

)2 − 1
]
σz

) = 0. Here
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each diagonal component of F is a Dirac monopole, yet the total ‘flux’(described by the first
Chern number) is zero. Specially, when j = 1

2 , the field strength F is zero.
As a natural extension, the adiabatic gauge field in SU(m)(m � 3) systems has been

developed by many authors [13, 14]. However, the topological structures of the adiabatic
gauge fields are still not clear and deserve further investigation. In the following two sections,
we focus on the topological properties of the adiabatic gauge fields for double-degenerate
three-level quantum system (a special kind of SU(3) system).

3. Coadjoint orbit of the doubly degenerate Hamiltonian for SU (3) system and
its geometry

The non-degenerate holonomy for the three-level system has been discussed in [13]. The
authors identified the parameter space for a pure state (or its projection space) with the manifold
of coset space SU(3)/SU(2)(or coset space SU(3)/U(2)), and find that the geometric
phase is proportional to the generalized solid angle of the five-dimensional manifold. The
adiabatic connection and Berry phase for doubly degenerate three-level systems have also been
previously calculated [14]. With these results in mind, here we will further investigate the
topological features of the Abelian and non-Abelian adiabatic gauge fields for SU(3) systems.
In this section, we first explore the structure of the coadjoint orbit (then the parameter space)
of the Hamiltonian of the doubly degenerate three-level system, with which we can easily
study the adiabatic gauge field for this system.

We choose the generators of SU(3) as the eight Gell–Mann matrices, namely, λi,

i = 1, 2, . . . , 8:

λ1 =
0 1 0

1 0 0
0 0 0

 , λ2 =
0 −i 0

i 0 0
0 0 0

 ,

λ3 =
1 0 0

0 −1 0
0 0 0

 , λ4 =
0 0 1

0 0 0
1 0 0

 ,

λ5 =
0 0 −i

0 0 0
i 0 0

 , λ6 =
0 0 0

0 0 1
0 1 0

 ,

λ7 =
0 0 0

0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .

They obey the following rule:

Tr{λiλj } = 2δij , (9)

[λi, λj ] = 2ifijkλk, (10)

where fijk are the structure constants:

f123 = 1, f458 = f678 =
√

3
2 , f147 = f246 = f257 = f345 = f516 = f637 = 1

2 .

(11)

The Hamiltonian and its eigenstates in the rest frame are given by (We assume that the first
and the second energy levels are degenerate):
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H0 = diag{E1, E1, E3} = 2E1 + E3

3
I + (E1 − E3)

λ8√
3
, (12)

|1〉 = (1, 0, 0)T , |2〉 = (0, 1, 0)T , |3〉 = (0, 0, 1)T , (13)

where I is the unit matrix; we can omit this term in the Hamiltonian because it does not
contribute to the geometric phase. So there is only one parameter left in H0, namely,
R = (E1−E3)√

3
. In the adiabatic approximation, R is always positive or always negative (because

when R = 0 the three eigenvalues are degenerate and the adiabatic approximation will not be
satisfied). The sign of R does not influence the eigenstates. Generally, we take it to be positive
and denote it as the radius in the parameter space, which is similar with the parameter B in
SU(2) case. Thus, the Hamiltonian in the rest frame can be rewritten as H0 = Rλ8, and the
time-dependent Hamiltonian is given by

H(R) = U(R)H0U(R)†,

U(R) = e(iα λ3
2 ) e(iβ λ2

2 ) e(iγ λ3
2 ) e(iθ

λ5
2 ) e(ia λ3

2 ) e(ib λ2
2 ) e(ic λ3

2 ) e(iφ λ8
2 ),

0 � α, a � 2π; 0 � θ, β, b � π; 0 � γ, c � 4π; 0 � φ � 2
√

3π.

(14)

Here we use the Euler’s angles of SU(3) introduced in [14, 17]. R represents the
group parameters of SU(3). It is easy to see that H0 is invariant under the action of
the subgroup U(2) generated by λ1, λ2, λ3 and λ8, i.e. this U(2) group is the isotropy
group of the Hamiltonian. Therefore the coadjoint orbit of H0 is the coset space
SU(3)/U(2) ∼= CP 2 (see, for example, [18]). In the coset space, each group element
Ū (R) = exp

{
iα λ3

2

}
exp

{
iβ λ2

2

}
exp

{
iγ λ3

2

}
exp

{
iθ λ5

2

}
corresponds to a new Hamiltonian H(R).

So, for a given radii R, the Hamiltonian’s parameter space is a CP 2 manifold. Together
with the radii R, we get the five-dimensional parameter space of the Hamiltonian. Since
CP 2 ⊂ S7 ⊂ R

8 [19], here we give the eight-dimensional coordinates of the parameter space:

H(R) =
8∑

i=1

ξ iλi, ξ i = 1

2
Tr[H(R)λi], (15)

ξ 1 =
√

3

2
R sin β cos α sin2 θ

2
, ξ 2 = −

√
3

2
R sin β sin α sin2 θ

2
,

ξ 3 = −
√

3

2
R cos β sin2 θ

2
, ξ 4 =

√
3

2
R sin θ cos

β

2
cos

α + γ

2
,

ξ 5 =
√

3

2
R sin θ cos

β

2
sin

α + γ

2
, ξ 6 =

√
3

2
R sin θ sin

β

2
cos

α − γ

2
,

ξ 7 =
√

3

2
R sin θ sin

β

2
sin

α − γ

2
, ξ 8 = 1

4
R(3 cos θ + 1).

(16)

The north pole and the ‘south sphere’ of the manifold CP 2 are intrinsically important for
our later discussion. For simplicity, we consider the unit CP 2 with R = 1. Considering
− 1

2 � ξ 8 � 1, the north pole is given by H(R) = λ8 = ξ iλi , with ξ i = δi,8, and the south
sphere is given by ξ 8 = − 1

2 , ξ 4 = ξ 5 = ξ 6 = ξ 7 = 0, (ξ 1)2 + (ξ 2)2 + (ξ 3)2 = 3
4 . It is a sphere

S2
s that describe the property of ‘infinity’ [20].

Now we give the metric on the CP 2 manifold in the four-dimensional coordinates. Since
in the Euclidian space R

8, the metric is a unit matrix, so

ds2 =
8∑

i=1

dξ i dξ i =
4∑

m,n=1

gmn dxm dxn, (17)
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where x1 = β, x2 = α, x3 = γ, x4 = θ (this gives a orientation on CP 2); submitting (16)
into (17) gives

(gmn) =


3
4 sin2 θ

2 0 0 0
0 g22

3
16 cos β sin2 θ 0

0 3
16 cos β sin2 θ 3

16 sin2 θ 0
0 0 0 3

4

 ,

where g22 = 3
16 sin2 θ cos2 β + 3

8 sin2 β(1 − cos θ). The volume is given by

V =
∫ π

0
dθ

∫ 2π

0
dα

∫ π

0
dβ

∫ 4π

0
dγ
√

det(g) = 9π2

2
. (18)

It is known that CP 2 is a symplectic (Kähler) space. The symplectic (Kähler) form is given
by [20]

η = 1√
3
fijkξi dξj dξk, (19)

which is invariant under SU(3). Here η is normalized by 〈η, η〉 = 2, where 〈,〉 is the obvious
inner product for forms. The volume form is given by dV = 1

2η2. In particular, η is self-dual.
Using the formulae (11) and (16), one can write this symplectic form in the four-dimensional
coordinate:

η = 1

2

4∑
m,n=1

ηmn dxm ∧ dxn, (20)

with

η12 = 3

4
sin β sin2 θ

2
, η24 = 3

8
cos β sin θ, η34 = 3

8
sin θ, else = 0. (21)

It is easy to verify that the above form η is self-dual:

∗η = 1

4
√

det (g−1)

4∑
a,b,c,d,m,n=1

gacgbdε
abmnηmn dxc ∧ dxd = η. (22)

Furthermore, the 2-forms like

�2 = fijk dξi dξjAk(ξ) with 〈�2, η〉 = 0 (23)

span the space of anti-selfdual 2-forms. This form is also invariant under SU(3).

4. Topology structures of the adiabatic U (2) and U (1) fields for the three-level system

In the above section, we have introduced the parameter space of the Hamiltonian in the double-
degenerate case. Now we shall probe into the features of the adiabatic gauge fields on the
parameter space. To study the evolution of the Hamiltonian and its eigenfunctions, we only
need to consider the following 4-parameter group elements:

Ū (R) = exp

{
iα

λ3

2

}
exp

{
iβ

λ2

2

}
exp

{
iγ

λ3

2

}
exp

{
iθ

λ5

2

}
,

|j (R)〉 = Ū (R)|j 〉,
0 � α � 2π; 0 � β, θ � π; 0 � γ � 4π; j = 1, 2, 3.

(24)
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where |1〉 and |2〉 are degenerate and span the eigenspace of level E1, and |3〉 is the eigenstate
of level E3, and |j (R)〉 is the j th instantaneous eigenstate of the H(R) = Ū (R)H0Ū (R)†.
Now we have two adiabatic gauge fields corresponding to the two levels. In other words, they
form two complex bundles over the manifold CP 2, and the structure groups are U(1) and
U(2) respectively. These two bundles are associated with two principal bundles: one is the
U(1) principal bundle known as the Hopf bundle P(CP 2, U(1)), and the other is the U(2)

principal bundle which equals to the group manifold SU(3) = P(CP 2, U(2)),

U(2) −→ SU(3)

↓
CP 2

The connection 1-forms of the two gauge fields are given below:

A(E1)ij = 〈i(R)|d|j (R)〉
= 〈i|Ū †(R)dŪ (R)|j 〉, i, j = 1, 2, (25)

A(E3) = 〈3|Ū †(R)dŪ (R)|3〉. (26)

A straightforward calculation gives (A = ∑4
m=1 Amdxm, where x1 = β, x2 = α, x3 =

γ, x4 = θ ):

A
(E1)
1 = i

4

[
−sin

(
θ

2
+ γ

)
+ sin

(
θ

2
− γ

)]
σx +

i

4

[
cos

(
θ

2
− γ

)
− cos

(
θ

2
+ γ

)]
σy,

A
(E1)
2 = i

4

[
−sin2 θ

2
cos βI +

(
cos2 θ

2
+ 1

)
cos βσz

]
+

i

8

[
sin

(
β − θ

2
+ γ

)
+ sin

(
β − θ

2
− γ

)
+ sin

(
β +

θ

2
+ γ

)
+ sin

(
β +

θ

2
− γ

)]
σx

+
i

8

[
−cos

(
β − θ

2
+ γ

)
+ cos

(
β − θ

2
− γ

)
− cos

(
β +

θ

2
+ γ

)
+ cos

(
β +

θ

2
− γ

)]
σy,

A
(E1)
3 = i

4

[
−sin2 θ

2
I +

(
1 + cos2 θ

2

)
σz

]
, A

(E1)
4 = 0;

A
(E3)
1 = 0, A

(E3)
2 = i

2
cos β sin2 θ

2
, A

(E3)
3 = i

2
sin2 θ

2
, A

(E3)
4 = 0. (27)

It is interesting that the connection form for level E1 has a U(1) component (the terms with
unit matrix I), which is proportional to the connection form of level E3. The above connection
forms are defined on CP 2. We can extend the field to the five-dimensional parameter space
with the connection along the radii A5 = AR = 0, (x5 = R). Then one can calculate the
geometric phase through a integral of these 1-forms along a path in the parameter space: γg =
P exp

{ ∮
c
A
}
, here P represents path ordering and c is a path in the parameter space. Now we

focus on the topological structures of the adiabatic gauge fields. The curvature 2-forms are
given by

F = dA + A ∧ A = 1

2

4∑
m,n=1

Fmn dxm ∧ dxn. (28)
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The components of the curvatures are given below:

F
(E1)
12 = i

4

[
sin β sin2 θ

2
(I − σz) + cos β cos

θ

2
sin2 θ

2
(cos γ σx + sin γ σy)

]
,

F
(E1)
13 = i

4
sin2 θ

2
cos

θ

2
[cos γ σx + sin γ σy],

F
(E1)
14 = i

4
sin

θ

2
[cos γ σy − sin γ σx],

F
(E1)
23 = i

4
sin β sin2 θ

2
cos

θ

2
[− cos γ σy + sin γ σx],

F
(E1)
24 = i

4

[
1

2
cos β sin θ(I + σz) + sin β sin

θ

2
(cos γ σx + sin γ σy)

]
,

F
(E1)
34 = i

8
sin θ [I + σz];

F
(E3)
12 = − i

2
sin β sin2 θ

2
, F

(E3)
24 = − i

4
cos β sin θ,

F
(E3)
34 = − i

4
sin θ, F

(E3)
23 = F

(E3)
13 = F

(E3)
14 = 0.

(29)

Now we can see that the 2-form F (E1) can be decomposed into an SU(2) part and an U(1)

part F (E1) = FE1[U(1)] + FE1[SU(2)]. The U(1) part FE1[U(1)] together with the 2-form F (E3)

is proportional to the self-dual form given in equations (20) and (21): FE1[U(1)] = i
3 Iη,

F (E3) = − 2i
3 η, whereas the SU(2) part FE1[SU(2)] satisfies equation (23) and is anti-selfdual.

The de Rham cohomology of CP 2 is given by H 2(CP 2) = Rη and H 4(CP 2) = Rη2.
The integer cohomology H 2∗(CP 2; Z) is generated by ω = η

3π
[20], i.e.∫

S2
s

ω =
∫

CP 2
ω ∧ ω = 1, (30)

where the 2- and 4-cycles are represented by the south sphere S2
s and CP 2 itself. This non-

trivial topological property of CP 2 leads to the non-trivial properties of the gauge fields on it.
For bundles over CP 2, the first and the second Chern classes are well defined: c1 = i

2π
Tr F ,

and c2 = 1
8π2 [Tr(F ∧ F) − Tr F ∧ Tr F ]. And the Chern numbers are given by

c1 = i

2π

∫
S2

s

Tr F, c2 = 1

8π2

∫
CP 2

[Tr(F ∧ F) − Tr F ∧ Tr F ]. (31)

One can easily get the Chern numbers for the U(1) bundle and the U(2) bundle:

c1(E3) = 1, c1(E1) = −1, c2(E1) = 1. (32)

This indicates that the U(1) gauge field (for level E(3)) has a monopole with ‘charge’ 1, and
the U(2) gauge field (for level E3) has a instanton-like structure. The latter is not a usual
instanton, because the field strength is neither self-dual nor anti-selfdual. However, just like
the usual instanton, the ‘action’ I (E3) of the U(2) gauge field is coincident with the second
Chern number c2 [20]:

c2 = 1

8π2

∫
CP 2

[Tr(F (E3) ∧ F (E3)) − Tr F (E3) ∧ Tr F (E3)]

= − 1

8π2

∫
CP 2

Tr[F (E3) ∧∗ F (E3)]

∝ I (E3). (33)
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It is known that CP 2 is not a spin manifold but a spinc manifold. There is no global SU(2)

spinor section on CP 2, but here we have induced a bundle with a wavefunction section whose
structure group is U(2). It is interesting that this bundle has the properties of both monopole
(described by c1) and instanton (described by c2).

5. Adiabatic gauge fields for the degenerate SU (3) eight-level system and the
completely non-degenerate three-level system

Similar to the case that the U(1) monopole of SU(2) system can be extended to high-
dimensional representation of group SU(2), the U(2) bundle can also be extended to high-
dimensional representation of group SU(3). As an example, we study here the adjoint
representation of SU(3), which describes an eight-level system. For this we chose the
generators as (�i)jk = fijk , where fijk is given by equation (11). Since �3 and �8 are not
diagonal, we can diagonalize them simultaneously by a unitary transformation: (�i)jk = ifijk

(see the appendix).
Since the geometric phase for a general SU(3) eight-level system has no new topological

structure, we only consider the Hamiltonian with an SU(2) symmetry (then the eigenvalues
have an extra degeneracy). Similar to equation (12), the Hamiltonian in the rest frame is
H0 = R�′

8. And the time-dependent Hamiltonian is given by

H(R) = Ū (R)H0Ū (R)†,

Ū (R) = exp

{
iα

�′
3

2

}
exp

{
iβ

�′
2

2

}
exp

{
iγ

�′
3

2

}
exp

{
iθ

�′
5

2

}
.

(34)

The parameter space of the Hamiltonian for a given R is also CP 2. The Hamiltonian has
three eigenvalues: ±

√
3

2 R and 0. The former two levels are both doubly degenerate, and the
latter is four-fold degenerate. Now we have two U(2) adiabatic fields and a quasi-U(4) gauge
field (because the field strength of the four-fold degenerate space is traceless and reducible).
The gauge potential and the strength of the fields are given in the appendix . The first Chern
number and second Chern number are given by (± and 0 symbols the energy level)

c
(−)
1 = i

2π

∫
S2

s

Tr F (−) = 3,

c
(0)
1 = i

2π

∫
S2

s

Tr F (0) = 0,

c
(+)
1 = i

2π

∫
S2

s

Tr F (+) = −3;

c
(−)
2 = 1

8π2

∫
CP 2

[Tr(F (−) ∧ F (−)) − Tr F (−) ∧ Tr F (−)] = 3,

c
(0)
2 = i

8π2

∫
CP 2

[Tr(F (0) ∧ F (0)) − Tr F (0) ∧ Tr F (0)] = 3,

c
(+)
2 = i

8π2

∫
CP 2

[Tr(F (+) ∧ F (+)) − Tr F (+) ∧ Tr F (+)] = 3.

(35)

So, for the adiabatic U(2) fields with level ±
√

3
2 R, we have got the similar result to

our former discussion. However, for level 0, it is very interesting that the strength of the
four-dimensional gauge field can be divided into an U(1) field whose field strength is zero and
a three-component SU(2) gauge field or spin-1 gauge field (to get this result one only needs
to make a global similarity transformation, since the third row and the third column of F (0)

mn
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are zero). This SU(2) gauge filed is anti-self dual with finite ‘Yang–Mills Action’, which is
described by the second Chern number. So we can say that we have got an instanton on CP 2.
Remembering that the parameter space is a five-dimensional manifold spanned by the radii R
and a four-dimensional ‘surface’ CP 2, analogous to the SU(2) Yang monopole on S4 or R

5

(which is described by the second Chern number) [7, 21], we can also say that we have got
a Yang-monopole-like gauge field on the parameter space. This result is based on the factor
that H 4(CP 2; Z) is non-zero.

Above we have discussed the SU(3) systems with an U(2) symmetry (accordingly there
are extra degeneracy). For non-degenerate three-level systems, the Hamiltonian has the
symmetry of U(1) ⊗ U(1)(generated by λ3 and λ8), and the parameter space is given by the
coset SU(3)/U(1) ⊗ U(1) = F2, which is a flag space. This flag space is topologically a S2

bundle over CP 2 [22]. The group elements in the coset space and the Hamiltonian are given
by

H0 = R3λ3 + R8λ8, H(R) = Ũ (R)H0Ũ
†(R),

Ũ (R) = Ū (R) exp

{
iϕ2

λ3

2

}
exp

{
iϕ1

λ2

2

}
, (0 � ϕ1 < π, 0 � ϕ2 < 2π),

(36)

where Ū (R) is given by equation (24). The adiabatic gauge fields are all U(1) fields. There
is some discussion about the property of these fields in [13]; here we reinspect it from another
point of view. In fact, the three eigenstates are equivalent, that is to say, we can change the
order of the three eigenvalues of H0 via a similarity transformation. Therefore, we only need
to consider the adiabatic field for the third eigenstate (0, 0, 1)T . Since the projective space for
a three-dimensional Hilbert space is just CP 2, the parameter space for the Hamiltonian gives
redundant information for its eigenstate (the angles ϕ1 and ϕ2 in Ũ (R) are redundant), thus the
components of the gauge potential along these variables are zero. The non-zero components
of the adiabatic gauge potential are the same as A(E3) (see equation (27)), and the curvature
2-form F is the same as F (E3) (see equation (29)).

Since the second Betti number (the dimension of the second cohomology group) of the
flag space F2 is b2 = 2 [23], and we can easily find two close 2-forms on F2: one is η which is
defined by equations (20) and (21), the other is τ = sin ϕ1dϕ1 ∧dϕ2, which is the volume form
on the fibre S2, the second de Rham cohomology of F2 can be written as H 2(F2) = Rη + Rτ .
Since the parameters on the fibre S2 are redundant, the 2-form τ does not give a topological
number for the bundles over F2. And the self-dual form η corresponds to the first Chern
number

(
F = F (E3) = − 2i

3 η
)
:

c1 = i

2π

∮
S2

s

F = 1. (37)

So the U(1) monopole defined on CP 2 in the degenerate case also exists on the parameter
space in the non-degenerate case.

6. Conclusions and further discussions

In conclusion, we have discussed the topology structure of the adiabatic gauge field in SU(3)

quantum systems. For the twofold-degenerate three-level system (the Hamiltonian has an
U(2) symmetry), we find that on the parameter space (CP 2 or the five-dimensional space),
the curvature 2-form for the non-degenerate level has the feature of U(1) monopole, while the
curvature for the degenerate level has either an instanton-like or a monopole-like structure.
It is interesting that for the SU(3) adjoint representation system (eight-level system) whose
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Hamiltonian has an U(2) symmetry, the adiabatic gauge field for the four-fold-degenerate
level has a Yang-monopole-like structure. The adiabatic gauge fields for a non-degenerate
three-level system have also been discussed and are shown to have monopole structures.

It will be interesting to generalize the present results to a general multi-level system, say,
SU(N)(N > 3) systems. In the defining representation, when the Hamiltonian for SU(N)

system has a U(N − 1) symmetry, we get a U(N − 1) gauge field and a U(1) field on the
parameter space CP (N−1) ∼= SU(N)/U(N − 1), one can expect that the former may have
an instanton-like structure while the latter may have a monopole-like structure. General N-
level quantum systems have been employed in many applications to quantum information
processing and quantum information storage [24]. Therefore, to study the geometric phase
and topological properties in these systems will be an interesting issue, and will be studied in
our next investigation.
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Appendix

The generators of the adjoint representation of SU(3) are given by (�i)jk = fijk . Since
�3 and �8 are not diagonal, we can diagonalize them by a matrix V with �′

3 = V λ3V
†,

�′
8 = V λ8V

†:

V =



0 0 −1/
√

2 0 0 −1/
√

2 0 0

0 0 1/
√

2 0 0 1/
√

2 0 0

0 0 0 1 0 0 0 0

−1/
√

2 0 0 0 0 0 −1/
√

2 0

1/
√

2 0 0 0 0 0 1/
√

2 0

0 −1/
√

2 0 0 0 0 0 −1/
√

2

0 1/
√

2 0 0 0 0 0 1/
√

2

0 0 0 0 1 0 0 0


,

�′
3 =



− 1
2 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 − 1
2


,
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�′
8 =



−
√

3
2 0 0 0 0 0 0 0

0 −
√

3
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

3
2 0

0 0 0 0 0 0 0
√

3
2


.

Other six generators �′
i = V �iV

† are given below:

�′
1 =



0 − 1
2 0 0 0 0 0 0

− 1
2 0 0 0 0 0 0 0

0 0 0 − i√
2

0 0 0 0

0 0 i√
2

0 0 − i√
2

0 0

0 0 0 0 0 0 0 0

0 0 0 i√
2

0 0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 1
2 0


,

�′
2 =



0 i
2 0 0 0 0 0 0

− i
2 0 0 0 0 0 0 0

0 0 0 − 1√
2

0 0 0 0

0 0 − 1√
2

0 0 − 1√
2

0 0

0 0 0 0 0 0 0 0

0 0 0 − 1√
2

0 0 0 0

0 0 0 0 0 0 0 i
2

0 0 0 0 0 0 − i
2 0


,

�′
4 =



0 0 0 − i√
8

−i
√

3
8 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 0 − 1
2

i√
8

0 0 0 0 0 − i√
8

0

i
√

3
8 0 0 0 0 0 −i

√
3
8 0

0 1
2 0 0 0 0 0 0

0 0 0 i√
8

i
√

3
8 0 0 0

0 0 − 1
2 0 0 0 0 0



,
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�′
5 =



0 0 0 − 1√
8

−
√

3
8 0 0 0

0 0 0 0 0 − i
2 0 0

0 0 0 0 0 0 0 i
2

− 1√
8

0 0 0 0 0 − 1√
8

0

−
√

3
8 0 0 0 0 0 −

√
3
8 0

0 i
2 0 0 0 0 0 0

0 0 0 − 1√
8

−
√

3
8 0 0 0

0 0 − i
2 0 0 0 0 0



,

�′
6 =



0 0 1
2 0 0 0 0 0

0 0 0 i√
8

−i
√

3
8 0 0 0

1
2 0 0 0 0 0 0 0

0 − i√
8

0 0 0 0 0 i√
8

0 i
√

3
8 0 0 0 0 0 −i

√
3
8

0 0 0 0 0 0 − 1
2 0

0 0 0 0 0 − 1
2 0 0

0 0 0 − i√
8

i
√

3
8 0 0 0



,

�′
7 =



0 0 − i
2 0 0 0 0 0

0 0 0 1√
8

−
√

3
8 0 0 0

i
2 0 0 0 0 0 0 0

0 1√
8

0 0 0 0 0 1√
8

0 −
√

3
8 0 0 0 0 0 −

√
3
8

0 0 0 0 0 0 i
2 0

0 0 0 0 0 − i
2 0 0

0 0 0 1√
8

−
√

3
8 0 0 0



.

The following are the components of the gauge potential and the strength of the adiabatic
gauge field for the SU(3) adjoint representation system, where +,− and 0 label the levels of
the Hamiltonian.

A
(−)
1 =

 0 − 1
4 (ei( θ

2 +γ ) + ei(− θ
2 +γ ))

1
4 (e−i( θ

2 +γ ) + ei( θ
2 −γ )) 0

 ,

A
(−)
2 =

(
− i

2 cos β cos θ i
2 sin β cos θ

2 eiγ

i
2 sin β cos θ

2 e−iγ i
4 cos β(3 − cos θ)

)
,
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A
(−)
3 =

(− i
2 cos θ 0

0 i
4 (3 − cos θ)

)
, A

(−)
4 = 0,

A
(0)
1 =


0 −

√
2i

2 cos θ
2 eiγ 0 0

−
√

2i
2 cos θ

2 e−iγ 0 0 −
√

2i
2 cos θ

2 eiγ

0 0 0 0

0 −
√

2i
2 cos θ

2 e−iγ 0 0

 ,

A
(0)
2 =


− i

4 cos β(3 + cos θ) −
√

2
2 sin β cos θ

2 eiγ 0 0
√

2
2 sin β cos θ

2 e−iγ 0 0 −
√

2
2 sin β cos θ

2 eiγ

0 0 0 0

0
√

2
2 sin β cos θ

2 e−iγ 0 i
4 cos β(3 + cos θ)

 ,

A
(0)
3 =


− i

4 (3 + cos θ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 i
4 (3 + cos θ)

 , A
(0)
4 = 0,

A(+)
m = A∗(−)

m , m = 1, 2, 3, 4

F
(−)
12 =

(
−i sin β sin2 θ

2
i
8 cos β cos θ

2 sin2 θ
2 eiγ

i
8 cos β cos θ

2 sin2 θ
2 e−iγ −2i sin β sin2 θ

2

)
,

F
(−)
13 =

 0 i
8 sin2 θ

2 (ei( θ
2 +γ ) + ei(− θ

2 +γ ))

i
8 sin2 θ

2 (e−i( θ
2 +γ ) + ei( θ

2 −γ )) 0

 ,

F
(−)
14 =

(
0 − 1

4 sin θ
2 eiγ

1
4 sin θ

2 e−iγ 0

)
,

F
(−)
23 =

(
0 1

4 sin β cos θ
2 sin2 θ

2 eiγ

− 1
4 sin β cos θ

2 sin2 θ
2 e−iγ 0

)
,

F
(−)
24 =

( − i
2 cos β sin θ i

4 sin β sin θ
2 eiγ

i
4 sin β sin θ

2 e−iγ − i
4 cos β sin θ

)
, F

(−)
34 =

(
− i

2 sin θ 0

0 − i
4 sin θ

)
,

F
(0)
12 =


i
2 sin β sin2 θ

2 −
√

2
4 cos β cos θ

2 sin2 θ
2 eiγ 0

√
2

4 cos β cos θ
2 sin2 θ

2 e−iγ 0 0

0 0 0

0
√

2
4 cos β cos θ

2 sin2 θ
2 e−iγ 0

0

−
√

2
4 cos β cos θ

2 sin2 θ
2 eiγ

0

− i
2 sin β sin2 θ

2

 ,
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F
(0)
13 =


0 −

√
2

4 cos θ sin2 θ
2 eiγ 0 0

√
2

4 cos θ sin2 θ
2 e−iγ 0 0 −

√
2

4 cos θ sin2 θ
2 eiγ

0 0 0 0

0
√

2
4 cos θ sin2 θ

2 e−iγ 0 0

 ,

F
(0)
14 =


0 −

√
2i

4 sin θ
2 eiγ 0 0

−
√

2i
4 sin θ

2 e−iγ 0 0 −
√

2i
4 sin θ

2 eiγ

0 0 0 0

0 −
√

2i
4 sin θ

2 e−iγ 0 0

 ,

F
(0)
23 =


0

√
2i

4 sin β cos θ
2 sin2 θ

2 eiγ 0 0
√

2i
4 sin β cos θ

2 sin2 θ
2 e−iγ 0 0

√
2i

4 sin β cos θ
2 sin2 θ

2 eiγ

0 0 0 0

0
√

2i
4 sin β cos θ

2 sin2 θ
2 e−iγ 0 0

 ,

F
(0)
24 =


− i

4 cos β sin θ −
√

2
4 sin β sin θ

2 eiγ 0 0
√

2
4 sin β sin θ

2 e−iγ 0 0 −
√

2
4 sin β sin θ

2 eiγ

0 0 0 0

0
√

2
4 sin β sin θ

2 e−iγ 0 i
4 cos β sin θ

 ,

F
(0)
34 =


− i

4 sin θ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 i
4 sin θ

 ,

F (+)
mn = F ∗(−)

mn m, n = 1, 2, 3, 4.
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